Skip to content
GW4 Water security alliance logo

GW4 Water Security Alliance

An interdisciplinary initiative tackling water challenges

  • Home
  • About
    • Meet the team
  • Research
    • Updates
    • Find an expert
    • Current Research
      • Water in a Changing World
      • Integrated Natural and Engineered Water Systems
      • Water Innovations
    • Past research projects
    • Future research
      • Water, Infrastructure and Extreme Events
      • Environmental Sensors
      • Reservoir Management
      • A Systems Approach TO Sustainable Fashion
      • AMR in Freshwater Ecosystems
  • Resources
  • Postgraduate training
  • Events
    • Upcoming events
    • WSA Annual conference 2020
      • Annual conference – Day 1 Itinerary
      • Annual conference – Day 2 intinerary
      • Annual conference – Day 3 itinerary
    • WSA Webinar series
    • Video library
      • Conference Proceedings
      • Webinars
  • Get in touch

Research Area: Wastewater

Rich Crane

Rich’s key research and teaching areas are extractive metallurgy, materials science, nanotechnology and applied geochemistry for a range of applications including the development of novel mining techniques, mine site reclamation, waste treatment, water treatment and contaminant transport.

More information on Rich’s institutional profile

Gabriel Yvon-Durocher

Gabriel Yvon-Durocher

Gabriel researches the effects of environmental change on the structure and functioning of ecosystems (which comprise groups of species, their interactions with one another and with the physical and chemical environment in which they exist). His work spans multiple levels of biological organisation, from sub-cellular biochemistry to the dynamics of ecosystems, and searches for similarities across aquatic and terrestrial systems. The ultimate goal of his work is to develop a predictive ‘tool box’ to forecast how ecosystems will change in a world increasingly dominated by humans and the oceans.

More information on Gabriel’s institutional profile

Michiel Vos

Michiel vos

Michiel combines approaches from microbiology, evolutionary ecology and population genomics to study bacterial evolution, focusing on horizontal gene transfer, sociomicrobiology and pathogens in the environment. Key projects include exploring the ecological drivers of antimicrobial resistance and virulence in aquatic bacteria.

More information on Michiel’s institutional profile

Rod Wilson

rod wilson

Rod is a comparative physiologist. He aims to provide a more holistic understanding of homeostasis in aquatic animals, both fish and invertebrates, freshwater and marine. This includes studies of how anthropogenic and natural environmental changes impact upon physiology and behaviour in the wild, and how to use physiology to help improve the sustainability of aquaculture (including animal growth efficiency and health, pathogen/parasite resistance, and farm effluent output). He also studies the reverse process: how physiological processes in aquatic animals can influence the regional and global environment in freshwater and the oceans.

More information on Rod’s institutional profile

Charles Tyler

Charles tyler

Charles is a reproductive physiologist and environmental biologist. His research interests include mechanisms of endocrine disrupting chemicals and nanoparticle ecotoxicology and assessing population level effects of contaminants in wildlife (primarily fish).

More information on Charles’ institutional profile

Aimee Murray

Aimee Murray

Aimee’s research area is antimicrobial resistance in the environment, particularly due to anthropogenic impacts in wastewater and receiving environments. This includes evolution and ecology of antimicrobial resistance, direct selection at low concentrations and co-selection by other antimicrobials and non-antimicrobial compounds, environmental risk assessment, and developing and validating the novel ‘SELECT’ method for rapid determination of selective concentrations of antibiotics and environmental surveillance of antimicrobial resistance. She has a long-standing collaboration with AstraZeneca and engaging with industry and policy makers.

More information on Aimee‘s institutional profile

Anne Leonard

anne leonard

Anne’s research focuses on marine systems and epidemiology. She studies catchment-level processes contributing to the transmission of antibiotic resistant bacteria in coastal bathing waters, with a view to identifying mitigation strategies to reduce the spread of antibiotic resistant bacteria in the environment. She is particularly interested in recreational waters, transmission in coastal bathing waters and microbial genes associated with land uses and re-use of water and crop irrigation.

More information on Anne’s institutional profile

Will Gaze

will gaze

Will research is in antimicrobial resistance in farmed and natural environments, including major elements of environmental sampling and wide-ranging analytical methodologies. This includes AMR evolution in the environment, using in situ and in vivo experiments, landscape scale dissemination of AMR and human exposure and transmission studies. Projects are divided into three main themes: ecology, evolution and public health perspectives. These map onto those identified in successive WHO, EU and UK AMR action plans facilitating interdisciplinary research approaches and joined up thinking.

More information on Will’s institutional profile

Guangtao Fu

Guangtao Fu

Guangtao’s research is focused on developing and applying new computer models, data analytics and artificial intelligence tools to tackle urban water challenges in water supply resilience, network leakage, flood risk, urban stormwater and wastewater management.

More information on Guangtao’s institutional profile

Raziyeh Farmani

Raziyeh Farmani

Raziyeh specialises in urban water systems modelling, water resources management and asset management and has expertise in multi-objective optimisation of water networks. Her research interests covers evolutionary optimisation, artificial intelligence and data mining.

More information on Raziyeh’s institutional profile

Devin Sapsford

Devin’s research focuses on minewater treatment technologies; recovery of metals from waste and biogeochemistry.

More information on Devin’s institutional profile.

Albert Chen

Albert Chen

Albert’s research focuses on water and human environment systems. Particular focus is on: hydraulic modelling, urban drainage, flood forecasting, innovation technology applications, water-food-energy-ecosystems nexus, climate change impact on critical infrastructure, prediction of water-borne disease, hazard impact and cascading effects assessment, and mitigation and resilience strategies.

More information on Albert’s institutional profile

David Butler

DAVID BUTLER

David’s research area is urban water management, including sustainable and resilient water systems, integration and control and water-energy-carbon interactions.

More information on David’s institutional profile

Peter Randerson

Peter’s research covers pollutant removal and nutrient recovery from effluents and waste water (biofiltration), using constructed wetland systems and the production of biomass crops.

More information on Peter’s institutional profile.

Timothy Easun

Tim’s research targets the use of photochemistry to control the behaviour of ultramicroporous metal-organic frameworks (MOFs) from changing their overall porosity, to directing molecular flow in order to make functional nanofluidic devices. His research team make MOFs that selectively trap gaseous species, translating that work into the liquid state in order to purify water of molecular and ionic contaminants, including the removal of harmful pharmaceutical molecules.

More information on Tim’s institutional profile.

Tom Arnot

Tom Arnot

Tom’s research falls into two main areas: the first is sustainable water and waste water treatment, and the second is novel drug delivery systems for healthcare and food applications.

More information on Tom’s institutional profile

Pedro Estrela

Pedro Estrela

Pedro’s research focuses on the development of label-free electrical biosensors and chemical sensors for a wide range of applications such as medical diagnostics and environmental monitoring. His research interests include label-free electrical detection of biomolecular interactions, biologically sensitive field-effect devices, detection of DNA, proteins, bacteria, cells, ions and small molecules, electrochemical impedance spectroscopy of biological systems, use of solid state devices in aqueous environments, surface biofunctionalization, electronic addressing of microarrays, nanobiosensors and microfluidics.

More information on Pedro’s institutional profile

Edward Feil

Edward Feil

My research interests lie in using sequence data to study bacterial pathogens, both from a point of view of managing infections (molecular epidemiology) but also in terms of understanding fundamental evolutionary dynamics.

More information on Edward’s institutional profile

Benedek Plosz

Benedek Plosz

Benedek’s research interests include assessing the fate of trace organic chemicals in urban water systems (pharma, drug biomarkers), computational fluid dynamics of bioengineered water systems, and biogeochemical used-water resource recovery.

More information on Benedek’s institutional profile

Barbara Kasprzyk-Hordern

Barbara Kasprzyk-Hordern

Barbara’s research focuses on environmental pollution, environmental epidemiology, water quality/water treatment and analytical chemistry. Barbara is particularly interested in water pollution and novel technologies used to decrease contamination of water. Recent interests are related to urban water and human epidemiology.

More information on Barbara’s institutional profile

Andrew Weightman

Andrew’s research includes work on microbiomes, microbes and informatics.

More information on Andrew’s institutional profile.

Ana Lanham

Ana Lanham

Ana works on wastewater microbiology, environmental biotechnology, wastewater treatment and resource recovery, microbial sociology, complex interactions of microbial systems and phosphorus and nutrient removal and recovery.

More information on Ana’s institutional profile

Junjie Shen

Junjie Shen

Junjie works on contaminant removal, capacitive deionisation and water treatment systems.

More information on Junjie’s institutional profile

Sangaralingam Ahilan

Sangaralingam Ahilan

Sangaralingam’s main interests are in sustainable urban flood risk management and the long-term performance of sustainable drainage systems, using detailed hydrological and hydro-morphodynamic modelling. He is also analysed SME behaviour in flooding aftermath.

More information on Sangaralingam’s institutional profile

Alberto Roldan Martinez

Alberto’s research is based on computer simulation linking materials composition and atomic structure to the reactivity of relevance to chemistry and sustainable industry. He is particularly interested in the recovery and utilisation of chemicals in wastewaters.

More information on Alberto’s institutional profile.

John Chew

John Chew

John’s research focuses on green cleaning (fouling and cleaning of surface layers in the food, textile, polymer processing, membranes and biotechnological industries). John works on the design and development of multi-functional adsorbent structures for air purification. John also studies the hydrodynamics and interfacial interactions of small scaled fluid particles with their continuous phase during the course of their movements in a piece of equipment (in processes such as wastewater treatment, fermentation and surface cleaning).

More information on John’s institutional profile.

Jan Hofman

Jan Hofman

Jan’s research focuses on sustainable solutions in the water cycle, sustainable water management, and water security. Jan also studies the origin, fate and abatement options for emerging contaminants, thermal energy recovery from water and wastewater and resource recovery from wastewater and water treatment residuals. Finally, Jan’s work involves water demand and sewer modelling and water treatment.

More information on Jan’s institutional profile

Emma Emanuelsson Patterson

Emma Emanuelsson Patterson

Emma analyses, optimises and designs chemical, biochemical and photocatalytic reactions and reactors. Her work combines in-situ reaction analysis techniques with traditional reaction investigation methodologies and mathematical analysis. In combination with reactor design, this allows for the development of novel and environmentally sustainable processes. Emma’s research includes 3D printing to develop an efficient, portable and low-cost continuous system for the treatment of contaminated drinking water. Emma also works in the optimisation of immobilisation protocols; investigation of reaction kinetics both experimentally and theoretically; reaction design and application of microbial tools (such as fluorescence in-situ hybridisation) applicable to wastewater treatment, food and the chemical and pharmaceutical industries.

More information on Emma’s institutional profile

Davide Mattia

Davide Mattia

Davide works in the application of membrane science – increasing their lifetime, reducing fouling, 3D membranes, chemical treatment and plant shutdowns. Davide’s research also focuses on the novel water treatment in waste and drinking water, e.g. photo-catalytic foams – a tertiary treatment to remove emerging contaminants (drugs etc). Finally, Davide studies the use of cellulose micro-beads to replace plastic in treatment systems.

More information on Davide’s institutional profile

Kate Baker

Kate Baker

Based in the Centre for Water Systems, Kate is the lead for community engagement on two European Union funded projects, NextGen (Living Labs for Circular Economy in the Water Sector) and LOTUS (International Cooperation for Low-cost innovative Technology for water quality monitoring and water resources management for Urban and rural water Systems in India).

More information on Kate’s institutional profile

Find an expert

Topics

Animal Physiology Antimicrobial Resistance Aquaculture Biogeochemistry Chemistry Circular Economy Climate Change Coastal Community Engagement Conservation / wildlife Contaminants / pollutants Data management Drinking water Drought Ecology Ecosystem services Ecotoxicology Environmental Risk Epidemiology Estuaries Evolutionary biology Extreme Events Fish / fisheries Flooding Freshwater Genetics and genomics Geochemistry Groundwater Human health Hydrology Informatics Lakes and reservoirs Marine Microbiology Modelling Molecular dynamics Pathogens Pollutants Rainfall Renewables / energy use Rivers Social Science Sustainable behaviours Wastewater Water systems

Follow us on Twitter

Tweets by Gw4Water

Find out more about water research

  • Water Innovation and Research Centre (Bath)
  • Water Initiative (Bristol)
  • Water Research Institute (Cardiff)
  • Centre for Water Systems (Exeter)
  • The Centre for Resilience in Environment, Water and Waste (Exeter)

Contact us

Andy Schofield
Manager

schofielda@cardiff.ac.uk

Follow us

  • twitter

GW4

GW4 is a collaboration between University of Bath, University of Bristol, Cardiff University and University of Exeter

© GW4
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.